Abstract

Pregnant hamsters were given a single oral dose (35 mumol/kg) of all-trans-retinoic acid, 13-cis-retinoic acid, all-trans-4-oxo-retinoic acid, 9-cis-retinal or all-trans-retinyl acetate during the early primitive streak stage of development. The radioactivity associated with the acidic retinoids was distributed to all tissues sampled (including placenta and fetus), with the largest accumulation in the liver and the least accumulation in fat. Radioactivity from 9-cis-retinal or retinyl acetate concentrated in the liver and lung. The all-trans-retinoic acid was oxidized in vivo to all-trans-4-oxo-retinoic acid and isomerized to 13-cis-retinoic acid: 13-cis-retinoic acid was oxidized to 13-cis-4-oxo-retinoic acid and isomerized to all-trans-retinoic acid. No parent 9-cis-retinal or retinyl acetate could be detected in maternal plasma. Plasma concentrations of the parent acidic retinoids reached their maxima within 60 min and then followed exponential decay. Of all the retinoids examined here, 13-cis-retinoic acid showed the largest area under the plasma curve, the slowest clearance and the longest elimination t1/2. Total plasma radioactivity, consisting of unidentified metabolites, remained elevated at 4 days after dosing. Maternal peak circulating concentrations of the parent retinoids, total radioactivity, plasma pharmacokinetic parameters or the total concentrations of residual radioactivity in fetal tissues could not be correlated with the differential teratogenic potencies of these retinoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.