Abstract

High wetting resistance and high permeate flux are crucial for membrane distillation (MD) to achieve a high performance. To achieve both of these qualities, this work focused on the fabrication of co-extruded dual-layer hollow fibre polyvinylidene fluoride nanocomposite membranes with hydrophobicity gradients. The nanocomposite membranes were incorporated with hydrophobised carbon-based nanoparticles, i.e. multi-walled carbon nanotube (MWCNT) and graphene nanoplatelet (GNP). The effect of different concentrations of nanoparticles (0, 1 and 2 wt%) on the properties and MD performance of the membranes were investigated. The outer layers of the nanocomposites membranes were more hydrophobic than the neat membrane, and the membrane containing 2 wt% of hydrophobised GNP exhibited the highest contact angle of 111.1°. All the inner layers of the membranes were found to be hydrophilic with contact angle of about 60°, thus proving that hydrophobicity gradients were achieved in the membranes. All the membranes had pore sizes and porosities around 0.1 μm and 21.8–42.9% respectively, which are suitable to be used in MD. The surface roughness and wetting resistance of all the nanocomposite membranes, especially the ones with GNP, were higher than the neat membrane and the values increased with increasing concentration of nanoparticles. These membrane characteristics had effects on the direct contact MD (DCMD) performance where all the nanocomposite membranes showed better flux than the neat membrane. The membrane incorporated with 2 wt% of hydrophobised GNP achieved the highest flux of 8.27 kg/(m2h). All the membranes achieved salt rejections of more than 99.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.