Abstract

The diploid number 2n = 30 is a presumed synapomorphy of Dendropsophus Fitzinger, 1843, although a noticeable variation in the number of biarmed/telocentric chromosomes is observed in this genus. Such a variation suggests that several chromosomal rearrangements took place after the evolutionary origin of the hypothetical ancestral 30-chromosome karyotype; however, the inferred rearrangements remain unknown. Distinct numbers of telocentric chromosomes are found in the two most cytogenetically studied species groups of Dendropsophus. In contrast, all three species of the Dendropsophus marmoratus (Laurenti, 1768) group that are already karyotyped presented five pairs of telocentric chromosomes. In this study, we analyzed cytogenetically three additional species of this group to investigate if the number of telocentric chromosomes in this group is not as variable as in other Dendropsophus groups. We described the karyotypes of Dendropsophus seniculus (Cope, 1868), Dendropsophus soaresi (Caramaschi & Jim, 1983) and Dendropsophus novaisi (Bokermann, 1968) based on Giemsa staining, C-banding, silver impregnation and in situ hybridization with telomeric probes. Dendropsophus seniculus, Dendropsophus soaresi and Dendropsophus novaisi presented five pairs of telocentric chromosomes, as did the remaining species of the group previously karyotyped. Though the species of this group show a high degree of karyotypic similarity, Dendropsophus soaresi was unique in presenting large blocks of het-ITSs (heterochromatic internal telomeric sequences) in the majority of the centromeres. Although the ITSs have been interpreted as evidence of ancestral chromosomal fusions and inversions, the het-ITSs detected in the karyotype of Dendropsophus soaresi could not be explained as direct remnants of ancestral chromosomal rearrangements because no evidence of chromosomal changes emerged from the comparison of the karyotypes of all of the species of the Dendropsophus marmoratus group.

Highlights

  • Faivovich et al (2005) resurrected the genus Dendropsophus Fitzinger, 1843 to accommodate all Neotropical hylid species known or suspected to have a diploid chromosome number 2n = 30

  • All of the Dendropsophus species karyotyped to date show 2n = 30, a noticeable variation in the number of biarmed/telocentric chromosomes is observed among them, suggesting that several chromosomal rearrangements took place after the evolutionary origin of the hypothetical ancestral 30-chromosome karyotype

  • The sequences obtained from D. soaresi (1314 bp) and D. novaisi (1310 bp) were 86.4% similar to each other, and 88.4% and 90.7% similar to the sequences of D. seniculus, respectively

Read more

Summary

Introduction

Faivovich et al (2005) resurrected the genus Dendropsophus Fitzinger, 1843 to accommodate all Neotropical hylid species known or suspected to have a diploid chromosome number 2n = 30. This cytogenetic character state was later confirmed as a synapomorphy for this genus by Suárez et al (2013) after the description of a 2n = 24 karyotype for Xenohyla Izecksohn, 1998, the sister genus of Dendropsophus (see Faivovich et al 2005, Pyron and Wiens 2011, Duellman et al 2016). The chromosomes and events involved in these rearrangements remain undiscovered because most Dendropsophus species karyotypes are not yet described, and few chromosomal markers are available for the known karyotypes, preventing reliable hypotheses of chromosome homeology

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.