Abstract

Eumeninae represents the largest subfamily within Vespidae, with 3,600 species described. Of these, only 18 have been cytogenetically analysed. In the present study, we used both classical and molecular techniques to characterise and compare the karyotypes of 3 Eumeninae species, namely, Ancistrocerus sp., Pachodynerus grandis, and Pachodynerus nasidens. Ancistrocerus sp. presented a haploid chromosome number of n = 12, with the first 2 chromosomes of the karyotype being almost entirely heterochromatic and much larger than the remaining chromosomes. The 2 Pachodynerus species presented the same chromosome number (n = 11 and 2n = 22) but displayed different karyotypic formulae. Additionally, chromosomal polymorphisms were observed in the analysed P. nasidens female. In the 3 species, heterochromatin was located in one of the chromosome arms. Fluorochrome staining revealed a balanced composition of AT and GC bases within the chromatin for each of the 3 species, except for few regions that were visibly GC-rich. All species had a single 18S rDNA site that co-localised with GC-rich regions; however, this localisation varied from species to species and not all GC-rich regions corresponded to ribosomal genes. Based on the cytogenetic data obtained here, we discuss the possible numerical/structural rearrangements that may be involved in the karyotypic evolution of the 3 studied species. In addition to the first description of the molecular cytogenetic characteristics of the Eumeninae subfamily and the genus Pachodynerus, this study also provides a relevant contribution towards the discussion of chromosomal evolution in Eumeninae wasps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call