Abstract

BackgroundCholinesterase inhibition is a vital target for the development of novel and mechanism based inhibitors, owing to their role in the breakdown of acetylcholine (ACh) neurotransmitter to treat various neurological disorders including Alzheimer’s disease (AD). Similarly, free radicals are implicated in the progression of various diseases like neurodegenerative disorders. Due to lipid solubility and potential to easily cross blood brain barrier, this study was designed to investigate the anticholinesterase and antioxidant potentials of the standardized essential oils from the leaves and flowers of Polygonum hydropiper.MethodsEssential oils from the leaves (Ph.LO) and flowers (Ph.FO) of P. hdropiper were isolated using Clevenger apparatus. Oil samples were analyzed by GC-MS to identify major components and to attribute the antioxidant and anticholinesterase activity to specific components. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potentials of the samples were determined following Ellman’s assay. Antioxidant assays were performed using 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) and hydrogen peroxide (H2O2) free radical scavenging assays.ResultsIn the GC-MS analysis 141 and 122 compounds were indentified in Ph.LO and Ph.FO respectively. Caryophylene oxide (41.42 %) was the major component in Ph.FO while decahydronaphthalene (38.29 %) was prominent in Ph.LO. In AChE inhibition, Ph.LO and Ph.FO exhibited 87.00** and 79.66***% inhibitions at 1000 μg/ml with IC50 of 120 and 220 μg/ml respectively. The IC50 value for galanthamine was 15 μg/ml. In BChE inhibitory assay, Ph.LO and Ph.FO caused 82.66*** (IC50 130 μg/ml) and 77.50***% (IC50 225 μg/ml) inhibitions respectively at 1000 μg/ml concentration. In DPPH free radical scavenging assay, Ph.LO and Ph.FO exhibited IC50 of 20 and 200 μg/ml respectively. The calculated IC50s were 180 & 60 μg/ml for Ph.LO, and 45 & 50 μg/ml for Ph.FO in scavenging of ABTS and H2O2 free radicals respectively.ConclusionsIn the current study, essential oils from leaves and flowers of P. hydropiper exhibited dose dependent anticholinesterase and antioxidant activities. Leaves essential oil were more effective and can be subjected to further in-vitro and in-vivo anti-Alzheimer’s studies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12944-015-0145-8) contains supplementary material, which is available to authorized users.

Highlights

  • Cholinesterase inhibition is a vital target for the development of novel and mechanism based inhibitors, owing to their role in the breakdown of acetylcholine (ACh) neurotransmitter to treat various neurological disorders including Alzheimer’s disease (AD)

  • AChE encoded by gene on chromosome 7 and BChE encoded by gene on chromosome 3 occur in the human central nervous system (CNS) [8, 9]

  • We recently reported the solvent extracts of P. hydropiper for antioxidant, anticholinestrase activities and its potential effectiveness to treat neurodegenerative disorders [29]

Read more

Summary

Introduction

Cholinesterase inhibition is a vital target for the development of novel and mechanism based inhibitors, owing to their role in the breakdown of acetylcholine (ACh) neurotransmitter to treat various neurological disorders including Alzheimer’s disease (AD). The cholinergic concept of Alzheimer’s disease (AD) was initially resulted from postmortem studies of the brain [1, 2], which led to the development of new drugs based on the inhibition of the key enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) [3, 4] Therapy with such drugs resulted in a significant improvement in cognitive functions and hampered the progression of the disease [5,6,7]. A decline of 10–15 % in the activity of AChE in the hippocampus and cerebral cortex has been reported in advanced stages of the disease, whereas BChE activity increases by 40–90 % [11, 13] These changes in the ratio of cholinesterases and variation in the level of the neurotransmitters in dementia must be considered in order to optimize the therapeutic balance between AChE and BChE inhibitions. These findings signify that inhibition of BChE in addition to AChE may be vital in the treatment of Alzheimer’s type dementia

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.