Abstract

There are documented advantages to using carbon nanotubes (CNTs) in composites for various property enhancements. However, to date, only limited studies have been conducted on using of longer CNTs over 1 mm in length. This study used long multiwalled carbon nanotubes (LMWCNTs) and their longer extended networks to test multiple properties in thermal conductivity, electrical conductivity, mechanical strength, and modulus and then compared these properties to those of shorter multi‐walled carbon nanotubes (SMWCNTs). For carbon fiber‐reinforced composites, the longer graphite paths from LMWCNTs in the matrix were expected to improve all properties. The longer networks were expected to allow for more undisturbed phonon transportation to improve thermal conductivity. This in turn relates to improved electrical conductivity and better mechanical properties. However, results have shown that the LMWCNTs do not improve or decrease thermal conductivity, whereas the shorter MWCNTs provide mixed results. LMWCNTs did show improvements in electrical, mechanical, and physical properties, but compared to shorter MWCNTs, the results in other certain properties varied. This perplexing outcome resides in the functioning of the networks made by both the LMWCNTs and shorter MWCNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.