Abstract

This study aimed to characterize calyculin A (CL-A)-induced and thimerosal-induced hyperactivation of cryopreserved bovine spermatozoa. Hyperactivation was effectively induced by treating with 10 nM CL-A for 60 min in the presence of cyclic AMP analogs, extracellular Ca2+, and albumin or with 12.5 µM thimerosal briefly in the absence of these capacitation-supporting factors. Majority of the spermatozoa exhibiting CL-A-induced hyperactivation were characterized by the 3-dimensional helical movement with head rotation, higher degree of flagellar curvature, and faster beating of the flagella than those exhibiting thimerosal-induced hyperactivation of the 2-dimensional planar movement without head rotation. The CL-A-induced hyperactivation was linked to the activation of cAMP/protein phosphorylation-dependent signaling cascades and to the decreased activity of glycogen synthase kinase-3α (GSK-3α). In contrast, the thimerosal-induced hyperactivation was suppressed by pretreatment with CL-A and cyclic AMP analogs in the absence of CaCl2 to activate cAMP/protein phosphorylation-dependent signaling cascades. Additionally, the intracellular Ca2+ level in live sperm flagella was significantly higher in the CL-A-treated samples than in the thimerosal-treated samples. These results indicate that CL-A-induced hyperactivation of cryopreserved bovine spermatozoa is an extracellular Ca2+-dependent type with the 3-dimensional helical movement, which can be regulated not only by the activation of cAMP/protein phosphorylation-dependent signaling cascades, leading to a large enhancement of the intracellular Ca2+ level, but also by the reduction in GSK-3α activity. Considering the different characteristics of thimerosal-induced hyperactivation, our results suggest that the diversity of sperm hyperactivation arises from different combinations of flagellar bending and head rotation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.