Abstract
The aim of this study was to investigate and compare the biomechanical properties of the conventional and novel hip prosthetic socket by using the finite element and gait analysis. According to the CT scan model of the subject's residual limb, the bones, soft tissues, and the socket model were reconstructed in three dimensions by using inverse modeling. The distribution of normal and shear stresses at the residual limb-socket interface under the standing condition was investigated using the finite element method and verified by designing a pressure acquisition module system. The gait experiment compared and analyzed the conventional and novel sockets. The results show that the simulation results are consistent with the experimental data. The novel socket exhibited superior stress performance and gait outcomes compared to the conventional design. Our findings provide a research basis for evaluating the comfort of the hip prosthetic socket, optimizing and designing the structure of the socket of the hip.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.