Abstract

The long life spans and slow aging rates of birds relative to mammals are paradoxical in view of birds' high metabolic rates, body temperatures and blood glucose levels, all of which are predicted to be liabilities by current biochemical theories of aging. Available avian life-table data show that most birds undergo rapid to slow "gradual" senescence. Some seabird species exhibit extremely slow age-related declines in both survival and reproductive output, and even increase reproductive success as they get older. Slow avian senescence is thought to be coupled evolutionarily with delayed maturity and low annual fecundity. Recent research in our lab and others supports the hypothesis that birds have special adaptations for preventing age-related tissue damage caused by reactive oxygen species (ROS) and advanced glycosylation endproducts, or AGEs, as well as an unusual capacity for neurogeneration in brain. Much of this work is in its early stages, however, and reliable biomarkers for comparing avian and mammalian aging need more thorough development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.