Abstract

We have used C6 glial cells (2B clone), early and late passage, as well as advanced passages (8-17) of glial cells derived from aged (18-month-old) mouse cerebral hemispheres (MACH), as model systems for studying glial properties. In this study passages 20-24 were considered "early" and passages 73-90 were considered "late." Activities of glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP) were used as biochemical markers for astrocytes and oligodendrocytes, respectively. Glial phenotypes were identified immunocytochemically using double staining for glial fibrillary acidic protein (GFAP) and A2B5 antigen (type 1 and type 2 astrocytes) or galactocerebroside (GalC) and A2B5 antigen (oligodendrocytes); cells positive for A2B5 and negative for both GFAP and GalC were considered to be precursor cells. Cultures were grown either in DMEM supplemented with 10% fetal bovine serum or in serum-free chemically defined medium (CDM) supplemented with insulin and transferrin. We report that early-passage C6 glial cells continue to be bipotential cells and when grown in the absence of serum express high GS and CNP activities correlating with the high number of GFAP- and GalC-positive cells, respectively. Late-passage cells continued to be committed to the type 2 astrocytic phenotype regardless of media composition (+/- serum). MACH cultures consist of protoplasmic type 1 astrocytes, differentiated type 2 astrocytes, and oligodendrocytes as well as glial progenitor cells. When these cultures were grown in CDM+transferrin, both GS and CNP activities increased, suggesting that transferrin has provided the signal for progenitor cells present in these cultures derived from aged brain to differentiate into type 2 astrocytes and oligodendrocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call