Abstract

The present study focuses on the determination of the biologically significant N-acetylneuraminic acid (NANA) drug binding interaction mechanism between bovine serum albumin (BSA) and human α-1 acid glycoprotein (HAG) using various optical spectroscopy and computational methods. The steady state fluorescence spectroscopy result suggests that the fluorescence intensity of BSA and HAG was quenched by NANA in a static mode of quenching. Further time-resolved emission spectroscopy measurements confirm that mode of quenching mechanism of NANA in the BSA and HAG system. The FT-IR, excitation-emission matrix and circular dichroism (CD) analysis confirms the presence of NANA in the HAG, BSA system, and fluorescence resonance energy transfer analysis shows that NANA transfers energy between the HAG and BSA system. The molecular docking result shows good binding affinity in both protein complexes, and further molecular dynamics simulations and charge distribution analysis were performed to gain more insight into the binding interaction mechanism of NANA in the HAG and BSA complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.