Abstract

The performance of dental resin composites is crucially influenced by the sizes and distributions of inorganic fillers. Despite the investigation of a variety of functional particles, glass fillers and nanoscale silica are still the predominant types in dental materials. However, achieving an overall improvement in the performance of resin composites through the optimization of their formulations remains a challenge. This work introduced a "dense" microhybrid filler system with 85 wt % filler loading, leading to the preparation of self-developed resin composites (SRCs). Comparative evaluations of these five SRCs against four commercial products were performed, including mechanical property, polymerization conversion, and shrinkage, along with water sorption and solubility and wear resistance. The results showed that among all SRC groups, SRC3 demonstrated superior mechanical performance, high polymerization conversion, reduced shrinkage, low water absorption and solubility, and acceptable wear resistance. In contrast to commercial products, this optimal SRC3 material was comparable to Z350 XT in flexural and diametral tensile strength and better in flexural modulus and surface hardness. The use of a "dense" microhybrid filler system in the development of resin composites provides a balance between physicochemical property and wear resistance, which may be a promising strategy for the development of composite products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.