Abstract

In the present study, sensitivity of Indian Summer Monsoon (ISM) to the cumulus convection scheme (CCS) is assessed using Regional Climate Model (RegCM4.4.5). Seasonal scale (May–June–July–August–September) simulation of the model forced with European Centre for Medium Range Weather Forecasts reanalysis data (ERA interim) is carried out for the consecutive three monsoon years 2007, 2008 and 2009. Four major CCS (MIT, Grell, Tiedtke and Kain–Fritsch) are employed. Model simulated results are validated with various observed and reanalysis datasets. In addition, the model results are also compared with that of its earlier version (RegCM4.1). Detailed analysis reveals that the model’s ability to delineate large scale ISM features such as Heat Low, Tibetan high, Somali Jet, Tropical Easterly Jet (TEJ), Sub-tropical Westerly Jet (STWJ) are fairly well using multiple CCS options. Fairly, better model performance is identified while Grell over ocean and MIT over land (GO_ML) is used. This scheme exhibits relatively lower warm (cold) bias over entire northwest and partially central India (peninsular and other parts of India). Both lower and upper level circulation pattern including TEJ and STWJ are better simulated by GO_ML scheme. Simulated distribution of precipitation is also more realistic and closed to TRMM data using that scheme. Further comparison of results from two model versions indicates that the simulation with recent version (4.4) is more realistic than that with the earlier version (RegCM4.1). The study concludes that RegCM4.4 with GO_ML would be the optimal combination when overall performance of the model is taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.