Abstract

Chemically assisted phytoremediation is suggested as an effective approach to amplify the metal-remediating potential of hyperaccumulators. The current study assessed the efficiency of two biodegradable chelants (S,S-ethylenediamine disuccinic acid, EDDS; nitrilotriacetic acid, NTA) in enhancing theremediation of Cd by Coronopus didymus (Brassicaceae). C. didymus growing in Cd-contaminated soil (35-175mgkg-1 soil) showed increased growth and biomass due to the hormesis effect, and chelant supplementation further increased growth, biomass, and Cd accumulation. A significant interaction with chelants and different Cd concentrations was observed, except for Cd content in roots and Cd content in leaves, which exhibited a non-significant interaction with chelant addition. The effect of the NTA amendment on the root dry biomass and shoot dry biomass was more pronounced than EDDS at all the Cd treatments. Upon addition of EDDS and NTA, bio-concentration factor values were enhanced by ~184-205 and ~ 199-208, respectively. The tolerance index of root and shoot increased over the control upon the addition of chelants, with NTA being better than EDDS. With chelant supplementation, bio-accumulation coefficient values were in the order Cd35 + NTA (~163%) > Cd105 + NTA (~137%) > Cd35 + EDDS (~89%) > Cd175 + NTA (~85%) > Cd105 + EDDS (~62%) > Cd175 + EDDS (~40%). The translocation factor correlated positively (r ≥ 0.8) with tolerance index and Cd accumulation in different plant parts. The study demonstrated that chelant supplementation enhanced Cd-remediation efficiency in C. didymus as depicted by improved plant growth and metal accumulation, and NTA was more effective than EDDS in reclaiming Cd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call