Abstract

The present study is carried out in the context of the continuous increase, worldwide, of the number of flash-floods phenomena. Also, there is an evident increase of the size of the damages caused by these hazards. Bâsca Chiojdului River Basin is one of the most affected areas in Romania by flash-flood phenomena. Therefore, Flash-Flood Potential Index (FFPI) was defined and calculated across the Bâsca Chiojdului river basin by using one bivariate statistical method (Statistical Index) and its novel ensemble with the following machine learning models: Logistic Regression, Classification and Regression Trees, Multilayer Perceptron, Random Forest and Support Vector Machine and Decision Tree CART. In a first stage, the areas with torrentiality were digitized based on orthophotomaps and field observations. These regions, together with an equal number of non-torrential pixels, were further divided into training surfaces (70%) and validating surfaces (30%). The next step of the analysis consisted of the selection of flash-flood conditioning factors based on the multicollinearity investigation and predictive ability estimation through Information Gain method. Eight factors, from a total of ten flash-floods predictors, were selected in order to be included in the FFPI calculation process. By applying the models represented by Statistical Index and its ensemble with the machine learning algorithms, the weight of each conditioning factor and of each factor class/category in the FFPI equations was established. Once the weight values were derived, the FFPI values across the Bâsca Chiojdului river basin were calculated by overlaying the flash-flood predictors in GIS environment. According to the results obtained, the central part of Bâsca Chiojdului river basin has the highest susceptibility to flash-flood phenomena. Thus, around 30% of the study site has high and very high values of FFPI. The results validation was carried out by applying the Prediction Rate and Success Rate. The methods revealed the fact that the Multilayer Perceptron – Statistical Index (MLP-SI) ensemble has the highest efficiency among the 3 methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.