Abstract
Current study deals with the comparative assessment for efficient adsorption of Cr(VI) from simulated wastewater using raw (NPP), phosphoric acid-activated (PPP) and sulphuric acid-activated (SPP) Pongamia pinnata shells. Physico-chemical alterations of the adsorbent were characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta-potential analysis, energy-dispersive X-ray spectroscopy (EDS) and total pore analysis using Brunauer-Emmett-Teller (BET). Parameters influencing the efficient biosorption of Cr(VI) species viz. initial pH of Cr(VI) solution, dosage of biosorbent, biosorbent-Cr(VI) contact period, initial concentration of Cr(VI) ions and reaction temperature were optimised. Various two-parameter and three-parameter isotherm models, kinetic models and thermodynamic studies were performed using equilibrium data. Langmuir adsorption capacity for NPP (raw biomass), PPP (phosphoric acid-activated biomass) and SPP (sulphuric acid-activated biomass) was found to be 96.2, 152 and 192mg/g, respectively. All the biosorbents gave best fit for pseudo-second-order model. Thermodynamic studies suggest spontaneous and endothermic interaction with increased degree of randomness. Effect of co-existing cations and anions on Cr(VI) biosorption onto the biosorbents implied that minimal competition and the biosorption capacity of the biosorbents for Cr(VI) species remained unaffected. Regeneration studies suggest that activated biosorbents can be used up to three times with continuous desorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Science and Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.