Abstract

Mammalian base excision repair (BER) is mediated through at least two subpathways designated ‘single-nucleotide’ (SN) and ‘long-patch’ (LP) BER (2-nucleotides long/more repair patch). Two forms of DNA substrate are generally used for in vitro BER assays: oligonucleotide- and plasmid-based. For plasmid-based BER assays, the availability of large quantities of substrate DNA with a specific lesion remains the limiting factor. Using sequence-specific endonucleases that cleave only one strand of DNA on a double-stranded DNA substrate, we prepared large quantities of plasmid DNA with a specific lesion. We compared the kinetic features of BER using plasmid and oligonucleotide substrates containing the same lesion and strategic restriction sites around the lesion. The Km for plasmid DNA substrate was slightly higher than that for the oligonucleotide substrate, while the Vmax of BER product formation for the plasmid and oligonucleotide substrates was similar. The catalytic efficiency of BER with the oligonucleotide substrate was slightly higher than that with the plasmid substrate. We conclude that there were no significant differences in the catalytic efficiency of in vitro BER measured with plasmid and oligonucleotide substrates. Analysis of the ratio of SN BER to LP BER was addressed using cellular extracts and a novel plasmid substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.