Abstract
To evaluate the pH and degree of surface roughness caused by five commercially and readily available etchants on tooth enamel. Five different etchants were chosen. An electric pH meter was utilized to test the pH of the etchants employed. Fifteen maxillary bicuspids that had been extracted were cleansed and stored in thymol solution. The samples were sorted into five groups of three each. A noncontact profilometer was employed to assess the microsurface changes of the pre-etched enamel. The teeth were then etched for 30 seconds with respect to the group to which they belonged before being cleaned and dried. The surface roughness after etching was analyzed, measured and values were tabulated. Descriptive statistics and paired t-test were done. The pH of the etchants and surface roughness of the enamel are varied across the five groups, though they have the same composition of 37% orthophosphoric acid. Etchant from Group C was found to be most acidic while the one manufactured by Group E was least acidic. Ivoclar, DPI, and DTECH showed a statistically significant value in surface roughness parameter post-etching (p <0.05). A statistical difference that was significant was observed with the Kruskal-Wallis test for surface roughness parameter (p <0.05). All five etchants had varied pH and the amount of surface roughness was also varied though the composition was the same. Further elemental analysis of these etchants has to be done to validate the results obtained. Etchants of the same composition should ideally produce the same effect on the tooth enamel surface, but etchants from different manufacturers produce different levels of surface roughness which could be due to differences in the composition of the prepared etchant. The study was conducted to assist in making an educated selection about the most cost-effective but efficient etchant for clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.