Abstract

BackgroundSampson et al. developed a novel method to estimate very low-density lipoprotein cholesterol (VLDL-C) and low-density lipoprotein cholesterol (LDL-C) in the setting of hypertriglyceridemia. Familial Combined Hyperlipidemia (FCHL) is a common primary dyslipidemia in which lipoprotein composition interferes with LDL-C estimation. This study aimed to evaluate performance of LDL-C using this new method (LDL-S) compared with LDL-C estimated by Friedewald’s and Martin eq. (LDL-F, LDL-M) in FCHL.MethodsData were collected from 340 subjects with confirmed FCHL. Concordance for VLDL-C measured by ultracentrifugation and LDL-C estimated using these measures compared to Sampson’s, Martin’s and Friedewald’s equations was performed using correlation coefficients, root mean squared error (RMSE) and bias. Also, concordance of misclassified metrics according to LDL-C (< 70 and < 100 mg/dL) and Apo B (< 80 and < 65 mg/dL) thresholds were assessed.ResultsSampson’s equation was more accurate (RMSE 11.21 mg/dL; R2 = 0.88) compared to Martin’s (RMSE 13.15 mg/dL; R2 = 0.875) and the Friedewald’s equation (RMSE 13.7 mg/dL; R2 = 0.869). When assessing performance according to LDL-C, Sampson’s had highest correlation and lowest RMSE compared to other equations (RMSE 19.99 mg/dL; R2 = 0.840). Comparing performance strength across triglyceride levels, Sampson’s showed consistently improved correlations compared to Martin’s and Friedewald’s formulas for increasing triglycerides and for the FCHL phenotype of mixed dyslipidemia. Sampson’s also had improved concordance with treatment goals.ConclusionsIn FCHL, VLDL-C and LDL-C estimation using Sampson’s formula showed higher concordance with lipid targets assessed using VLDL-C obtained by ultracentrifugation compared with Friedewald’s and Martin’s equations. Implementation of Sampson’s formula could improve treatment monitoring in FCHL.

Highlights

  • Low-density lipoprotein cholesterol (LDL-C) is the principal lipid target to reduce cardiovascular risk in the management of dyslipidemias [1, 2]

  • 137 (40.3%) subjects who satisfied the diagnosis of isolated hypercholesterolemia and 203 (59.7%) who belonged to the mixed dyslipidemia phenotype were identified, it was not observed subjects who completed criteria for isolated hypertriglyceridemia

  • On comparing differences across Familial Combined Hyperlipidemia (FCHL) phenotypes, in the mixed dyslipidemia phenotype the age at diagnosis was highest, fewer patients were women, more often had type 2 diabetes (T2D) and more patients were under statin treatment compared to the isolated hypercholesterolemia phenotype (P < 0.010)

Read more

Summary

Introduction

Low-density lipoprotein cholesterol (LDL-C) is the principal lipid target to reduce cardiovascular risk in the management of dyslipidemias [1, 2]. Familial Combined Hyperlipidemia (FCHL) is the most common primary atherogenic dyslipidemia and is characterized by very-low-density lipoprotein (VLDL) overproduction and fluctuations in the serum lipid profile, making it difficult to estimate LDL-C in clinical settings [5]. Several studies have shown that in FCHL, the qualitative properties of lipoproteins are altered, including chemical composition and characteristics of VLDL, LDL and High-density lipoprotein (HDL). These alterations are more evident in subjects with hypertriglyceridemia phenotype. Familial Combined Hyperlipidemia (FCHL) is a common primary dyslipidemia in which lipoprotein composition interferes with LDL-C estimation. This study aimed to evaluate performance of LDL-C using this new method (LDL-S) compared with LDLC estimated by Friedewald’s and Martin eq (LDL-F, LDL-M) in FCHL

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call