Abstract
Use of magnesium implants is a new trend in orthopedic research because it has several important properties that recommend it as an excellent resorbable biomaterial for implants. In this study, the corrosion rate and behavior of magnesium alloys during the biodegradation process were determined by in vitro assays, evolution of hydrogen release, and weight loss, and further by in vivo assays (implantation in rabbits’ bone and muscle tissue). In these tests, we also used imaging assessments and histological examination of different tissue types near explants. In our study, we analyzed the Mg-1Ca alloy and all the hypotheses regarding the toxic effects found in in vitro studies from the literature and those from this in vitro study were rejected by the data obtained by the in vivo study. Thus, the Mg-1Ca alloy represents a promising solution for orthopedic surgery at the present time, being able to find applicability in the small bones: hand or foot.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.