Abstract

ABSTRACT Several diagnostic measures have been employed to precisely detect the SARS-CoV-2 viral infection using viral antigens, nucleic acids, and other serological approaches. The sensitivity and specificity of the serological tests remain a challenging need. Here, we describe the detection of human anti-SARS-CoV-2 IgG and IgM antibodies qualitatively through two optimized in-house ELISA and lateral flow immunoassay. Both approaches are based on the prokaryotic expression of 50 kDa SARS-CoV-2 recombinant nucleocapsid protein. This SARS-CoV-2rN-6×His was used either to coat ELISA plates or to be conjugated to gold nanoparticles followed by colorimetric detection of bound human IgG or IgM. In the LFA, we show the optimization of nanoparticle size, protein-binding capacity, membrane treatment, and finally testing the potential capacity of using either the optimized ELISA or LFA in detecting antibodies raised against viral infection. Assessment of both methods was carried out using human sera-positive and negative SARS-CoV-2 antibodies. The ELISA and LFA tests showed 86%, 96.5% sensitivity, 92%, 93.75% specificity, 97%, 98.2% PPV, and 64%, 88.2% NPV, respectively. In conclusion, both approaches were able to successfully detect human antibodies against SARS-CoV-2 nucleocapsid protein. The importance of both protocols cannot be overstated in the detection and diagnosis of viral infections, especially in developing countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call