Abstract
The objectives of this study were to comparatively assess the magnitude and direction of forces and moments generated from different bracket systems, during the initial levelling and alignment stage of orthodontic treatment. Three types of brackets were used: Orthos2 (Ormco), Damon2 (Ormco), and In-Ovation R (GAC). The brackets were bonded on resin replicas models of a patient's crowded mandibular arch, and a 0.014 inch Damon archform CuNiTi (Ormco) wire was inserted. The model was mounted on the Orthodontic Measurement and Simulation System (OMSS) and six static measurements were taken at the initial crowded state per bracket for the lateral incisor, canine, and first premolar. A total of 10 repetitions were performed for each measurement, with new brackets and archwires used for each trial. The forces and moments generated were registered directly on the OMSS software and were statistically analyzed using a one-way analysis of variance separately for each dental arch location and force component. Group differences were further analyzed with Tukey's post hoc comparisons test at the 0.05 significance level. The lingually inclined, crowded lateral incisor presented an extrusive and buccal movement and showed the lowest force in the vertical direction, whereas the self-ligating group of brackets generated the highest force in the buccolingual direction. The moments applied by the three bracket systems followed the general trend shown for forces; in the vertical axis, the self-ligating brackets exerted lower forces than their conventional counterpart. This was modified in the buccolingual direction where, in most instances, the self-ligating appliances applied higher moments compared with the conventional bracket. In most cases, the magnitude of forces and moments ranged between 30-70 cN and 2-6 N mm, respectively. However, maximum forces and moments developed at the lateral incisor were almost four times higher than the average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.