Abstract

Cooking organic aerosol (COA) is an important source of particulate pollutants in urbanized regions. Yet, the diversity and complexity of COA components make direct identification and quantification of COA difficult. In this study, we conducted collocated OA measurements with an aerosol mass spectrometer (AMS) and a thermal desorption aerosol gas chromatography-mass spectrometer (TAG) in Shanghai. Cooking molecular tracers (e.g., C18 fatty acids, azelaic acid) measured by TAG provide unambiguous source information for evaluating the tracer ion (C6H10O+, m/z 98) used for identification and apportionment of COA in AMS analysis. Based on the collocated AMS and TAG measurements, two COA factors, namely, a primary COA (PCOA) and an oxygenated COA (OCOA) produced from rapid oxygenation of freshly emitted PCOA, were identified. Criteria for identifying COA factors from AMS analysis with different oxygenation levels are proposed, i.e., characteristic mass spectra, temporal variations, etc. Furthermore, two positive matrix factorization approaches, namely, AMS-PMF and the molecular marker (MM)-PMF, were compared for COA quantification, where high consistency was found with the contribution of COA to total PM2.5 mass estimated to be 9 ± 7% by AMS-PMF and 6 ± 5% by the MM-PMF. Our study highlights the important impacts of cooking activities on air quality in urban areas. We also demonstrate the advantage of conducting collocated measurements using multiple high time resolution mass spectrometric techniques in advancing our understanding of atmospheric OA chemistry and improving the accuracy of source apportionment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.