Abstract

This research aims to investigate and compare the properties of biochar derived from low-density polyethylene (LDPE) and neem leaves, utilizing both batch and semi-batch biomass fuel-based reactors for co-carbonization. While previous studies have primarily employed electrical-powered or biomass fuel-based batch reactors, this study introduces the innovative approach of utilizing a semi-batch reactor, marking a significant advancement in biochar production. The co-carbonization process lasted for ∼2 h in the batch-based system and nearly 3 h in the semi-batch system. The semi-batch system achieved higher temperature peaks in comparison to the batch-based system. In terms of biochar yield, the batch-based system generated a biochar yield of 30.35%, while the semi-batch system yielded 17.3%. Through BET analysis, it was determined that the biochar produced using the semi-batch reactor had a surface area of 227 m2/g and a pore diameter of 2.116 nm. Similarities and differences in functional groups among the biochar samples produced using the semi-batch and batch reactors were identified through FTIR analysis. By utilizing EDX spectroscopy, it was observed that the batch-based system contained seven elements, whereas the semi-batch-reacted sample had similar elements but lacked nitrogen, potassium, and magnesium. The semi-batch-reacted sample exhibited an increased carbon content, whereas the concentrations of other elements decreased when compared to the batch-reacted sample. The biochar samples can be applied in various applications, including water treatment, energy conversion, and storage. The findings of this study contribute to sustainable waste management practices, carbon sequestration efforts, and the development of innovative solutions for various industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call