Abstract

Tower crane is also known as rotary crane and widely used in constructions due to limited human capability to carry the various types of load at the construction site. In general crane is used for the purpose of loading and unloading heavy material from one place to another. However, in order to transfer the material in minimum time from one location to another, swaying of the payload will occur. Hence, this research presents the investigation of tower crane system which mainly focusing on the swaying angle of the payload by implementing conventional and intelligent controllers. Its mathematical modeling is developed using the Newton’s Second Law and simulation is done within the MATLAB/Simulink environment. Simulation results are presented in cart trajectory capability and payload sway angle reduction. A comparative assessment between conventional controller and intelligent controller for the tower crane system are presented and discussed. Furthermore, the effect of various rope length and payload mass of the tower crane system to the performance of trajectory capability and sway angle reduction are also presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.