Abstract

Event pairing has been proposed for the optimization of developmental sequences (event sequences) on a given phylogenetic hypothesis (cladogram) to determine instances of sequence heterochrony. Here, we show that event pairing is faulty, leading to the optimization of impossible hypothetical ancestors, the underestimation of the lengths of the developmental sequences on the tree, and the proposition of synapomorphies that are not supported by the data. When used for phylogenetic analysis, event pairing can even produce cladograms that are inconsistent with the data. These errors are caused by the fact that event pairing treats dependent features as if they were independent. We present a new method for comparative and phylogenetic analysis of developmental sequences that does not exhibit these errors. Our method applies Search-based character optimization and treats the entire developmental sequence as a single character that is then analyzed by using an edit cost function, which specifies the transformation cost between pairs of observed and unobserved character states, and dynamic programming. In other words, the developmental sequence is directly optimized on the tree. We used event pairing as an edit cost function, but others are possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call