Abstract

Green bacteria are a diverse group of chlorophototrophic organisms belonging to three major taxa within the domain Bacteria: Chlorobi, Chloroflexi, and Acidobacteria. Most, although not all, of these organisms synthesize bacteriochlorophylls c, d or e and utilize chlorosomes for light harvesting. The pace of discoveries concerning the metabolism and physiology of these bacteria has accelerated rapidly since completion of the sequencing of the genomes of the green sulfur bacterium Chlorobaculum tepidum and the filamentous anoxygenic phototroph, Chloroflexus aurantiacus. This chapter summarizes insights gained from the extensive genome sequence data for members of these three taxa. The discovery of the first chlorophototrophic member of the phylum Acidobacteria, Candidatus Chloracidobacterium thermophilum, is also described, and recent insights into the physiology and metabolism of this unique, aerobic photoheterotroph are presented. Based upon phylogenetic inferences derived from analyses of sequences for reaction centers and enzymes of (bacterio)chlorophyll biosynthesis, some implications concerning the evolutionary origins of photosynthesis are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.