Abstract

Effective machine learning regression models are useful toolsets for managing and planning energy in PV grid-connected systems. Machine learning regression models, however, have been crucial in the analysis, forecasting, and prediction of numerous parameters that support the efficient management of the production and distribution of green energy. This article proposes multiple regression models for power prediction using the Sharda University PV dataset (2022 Edition). The proposed regression model is inspired by a unique data pre-processing technique for forecasting PV power generation. Performance metrics, namely mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), R2-score, and predicted vs. actual value plots, have been used to compare the performance of the different regression. Simulation results show that the multilayer perceptron regressor outperforms the other algorithms, with an RMSE of 17.870 and an R2 score of 0.9377. Feature importance analysis has been performed to determine the most significant features that influence PV power generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.