Abstract

Vibrio parahaemolyticus is a gram-negative bacterium capable of causing diseases in humans and aquatic animals. The global relationships among V. parahaemolyticus genomes have been studied using multilocus sequence typing (MLST). Recently, the MLST gene recA has shown difficulties in amplification and/or a larger PCR fragment for some V. parahaemolyticus genomes due to genetic recombination. We aimed to investigate these recombination events of recA gene by analyzing 500 publicly available whole genomes from the NCBI database. The genomes with untypable recA genes were separated using BIGSdb and CGEMLST 2.0 servers, followed by annotation with RAST and NCBI pipelines. Moreover, the variable nature of V. parahaemolyticus was investigated by wgMLST analysis. The hypothetical proteins in recombinant regions were analyzed with VCIMPred tool. In the results, 3 genomes were detected with recA gene recombination, in which 2 were associated with phages and 1 to an AHPND causing strain. All 3 recombinant regions had a G+C content of 39%-40% with 15-30 ORFs, including a newly incorporated recA gene. These acquired recA genes were closely related to 3 different genera namely Aliivibrio, Photobacterium, and Vibrio. The wgMLST analysis indicated genetic recombination events occur independently among V. parahaemolyticus on a global scale. The in silico analysis revealed 4 hypothetical proteins associated with virulence factors in recombinant regions. The present study confirms, recombination events of V. parahaemolyticus recA gene, are diverse and may have an impact on the evolutionary process. Moreover, understanding these genetic recombination events of the recA gene is necessary to determine their STs and, therefore assessing epidemiological relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.