Abstract
In this study, the open-source software MFIX-DEM simulations of a bubbling fluidized bed (BFB) are applied to assess nine drag models according to experimental and direct numerical simulation (DNS) results. The influence of superficial gas velocity on gas–solid flow is also examined. The results show that according to the distribution of time-averaged particle axial velocity in y direction, except for Wen–Yu and Tenneti–Garg–Subramaniam (TGS), other drag models are consistent with the experimental and DNS results. For the TGS drag model, the layer-by-layer movement of particles is observed, which indicates the particle velocity is not correctly predicted. The time domain and frequency domain analysis results of pressure drop of each drag model are similar. It is recommended to use the drag model derived from DNS or fine grid computational fluid dynamics–discrete element method (CFD-DEM) data first for CFD-DEM simulations. For the investigated BFB, the superficial gas velocity less than 0.9 m·s−1 should be adopted to obtain normal hydrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.