Abstract

This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures independently of any specific transduction mechanism; rotational and linear motion-based architectures are considered. The addition of a linear spring element to the structures has the potential to improve power output. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 58% when real walking data is used as input to the simulations. The power output of a rotational prototype device was measured for various inputs and compared against simulation in order to corroborate the rotational device model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call