Abstract
Health care has millions of centric data to discover the essential data is more important. In data mining the discovery of hidden information can be more innovative and useful for much necessity constraint in the field of forecasting, patient’s behavior, executive information system, e-governance the data mining tools and technique play a vital role. In Parkinson health care domain the hidden concept predicts the possibility of likelihood of the disease and also ensures the important feature attribute. The explicit patterns are converted to implicit by applying various algorithms i.e., association, clustering, classification to arrive at the full potential of the medical data. In this research work Parkinson dataset have been used with different classifiers to estimate the accuracy, sensitivity, specificity, kappa and roc characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Mining Techniques and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.