Abstract

Single amino-acid substitution in a protein affects its structure and function. These changes are the primary reasons for the advent of many complex diseases. Analyzing single point mutations in a protein is crucial to see their impact and to understand the disease mechanism. This has given many biophysical resources, including databases and web-based tools to explore the effects of mutations on the structure and function of human proteins. For a given mutation, each tool provides a score-based outcomes which indicate deleterious probability. In recent years, developments in existing programs and the introduction of new prediction algorithms have transformed the state-of-the-art protein mutation analysis. In this study, we have performed a systematic study of the most commonly used mutational analysis programs (10 sequence-based and 5 structure-based) to compare their prediction efficiency. We have carried out extensive mutational analyses using these tools for previously known pathogenic single point mutations of five different proteins. These analyses suggested that sequence-based tools, PolyPhen2, PROVEAN, and PMut, and structure-based web tool, mCSM have a better prediction accuracy. This study indicates that the employment of more than one program based on different approaches should significantly improve the prediction power of the available methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call