Abstract

This study presents the results of laboratory experiments conducted to determine the mechanical parameters for cement mortar with various quantities of waste fibers, polypropylene microfibers, and steel microfibers. Waste fibers were used as samples and obtained using an end-of-life car tire recycling process. For comparison, samples with the addition of steel and polypropylene microfibers were tested. The same degrees of fiber reinforcement were used for all types of fibers. Ultimately, 22 mixtures of cement mortar were prepared. The aim of this study is therefore to present and compare basic mechanical parameter values. Compressive strength, flexural strength, fracture toughness, and flexural toughness were of particular interest. A three-point bending test was performed on three types of samples, without a notch and with a notch of 4 and 8 mm. The results show that the use of steel microfibers in the cement mortar produces a product with better properties compared to a mixture with steel cord or polypropylene fibers. However, the cement mortar with the steel cord provides better flexural strength and greater flexural toughness factors compared to the cement mortar with polypropylene fibers. This means that the steel cord is a full-value ecological replacement for different fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.