Abstract

The joint construction of subways and other public buildings is a relatively newer type of construction. There is little research experience in the vibration characteristics and track damping design for this type of structure. In this study, a field test was adopted to conduct site measurement analysis on the vibration response of the joint construction project consisting of a subway tunnel and a building with typical frame structures. Numerical simulation methods were also adopted to, respectively, assume the use of ordinary tracks and steel-spring floating slab tracks for the subway for the situation where the Cologne-egg high-elastic fasteners were used on the track for damping purposes. Comparisons were performed to analyze the difference in the system vibration response between three different types of track. The results showed that the high-elastic fastener track and floating slab track both have a certain degree of damping effect compared with an ordinary track. Specifically speaking, the former has a damping advantage for frequency bands below 20 Hz, while the latter has the advantage for frequency bands above 20 Hz under the impact of the structural vibration characteristics for this joint construction. For this jointly construction structure, affected by the natural vibration characteristics of the structure, the natural frequency of the floating slab track is within 4 ∼ 10 Hz, and the similar vibration reduction effect can be achieved. This indicates that the structural vibration characteristic of the jointly constructed structure is an important factor determining the appropriate natural frequency of the floating slab track.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call