Abstract

Spintronic THz emitters have attracted much attention due to their desirable properties, such as affordability, ultra-wideband capability, high efficiency, and tunable polarization. In this study, we investigate the characteristics of THz signals, including their frequency, bandwidth, and amplitude, emitted from a series of heterostructures with ferromagnetic (FM) and nonmagnetic (NM) materials. The FM layer consists of a wedge-shaped CoFeB layer with a thickness of 0 to 5 nm, while the NM materials include various metals such as Pt, Au, W, Ru, Pt%92Bi%8, and Ag%90Bi%10 alloys. Our experiments show that the emitter with the Pt-NM layer has the highest amplitude of the emitted THz signal. However, the PtBi-based emitter exhibits a higher central THz peak and wider bandwidth, making it a promising candidate for broadband THz emitters. These results pave the way for further exploration of the specific compositions of Pt1−x Bix for THz emitter design, especially with the goal of generating higher frequency and wider bandwidth THz signals. These advances hold significant potential for applications in various fields such as high-resolution imaging, spectroscopy, communications, medical diagnostics, and more.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call