Abstract

Using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to obtain backward trajectories and then conduct clustering analysis is a common method to analyze potential sources and transmission paths of atmospheric particulate pollutants. Taking Qingdao (N36 E120) as an example, the global data assimilation system (GDAS 1°) of days from 2015 to 2018 provided by National Centers for Environmental Prediction (NCEP) is used to process the backward 72 h trajectory data of 3 arrival heights (10 m, 100 m, 500 m) through the HYSPLIT model with a data interval of 6 h (UTC 0:00, 6:00, 12:00, and 18:00 per day). Three common clustering methods of trajectory data, i.e., K-means, Hierarchical clustering (Hier), and Self-organizing maps (SOM), are used to conduct clustering analysis of trajectory data, and the results are compared with those of the HYSPLIT model released by National Oceanic and Atmospheric Administration (NOAA). Principal Component Analysis (PCA) is used to analyze the original trajectory data. The internal evaluation indexes of Davies–Bouldin Index (DBI), Silhouette Coefficient (SC), Calinski Harabasz Index (CH), and I index are used to quantitatively evaluate the three clustering algorithms. The results show that there is little information in the height data, and thus only two-dimensional plane data are used for clustering. From the results of clustering indexes, the clustering results of SOM and K-means are better than the Hier and HYSPLIT model. In addition, it is found that DBI and I index can help to select the number of clusters, of which DBI is preferred for cluster analysis.

Highlights

  • Air pollution is harmful to human health

  • Discussion is different, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) is the same algorithm as the Hierarchical clustering (Hier) compiled the Caused author.byThe results

  • Hier) are compared and analyzed for backward trajectory data of air mass, and 12 data sets are used to ensure the universality of the results

Read more

Summary

Introduction

Air pollution is harmful to human health. Many people die prematurely because of air pollution [1]. Air mass trajectories can be used to analyze the transport of air pollutants between regions [2,3,4,5,6]. An important input for air mass trajectory models is meteorological data. Assuming that air mass movement depends only on wind history, the backward trajectory model of the atmosphere can be established by using vertical profiles of wind vectors in meteorological data. A large amount of backward trajectory data is needed to study the dominant wind direction in a particular region, which requires the trajectory data to be clustered

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.