Abstract

The novel results reported here present qualitative and quantitative regularities of the deformation behavior of a spherical bearing with a different location and inclination angle of the antifriction layer. A number of topical problems encountered during the assessment of the performance bearings are considered in the work. The spherical bearings of the bridge span are investigated. Structures are load-bearing elements of transport systems. They perceive thermal power loads from the bridge span. The temperature problem is not considered in this study. In this paper, a comparative analysis of the bridge spherical bearing operation at different antifriction layer locations was performed. Two bearing geometries are considered: the interlayer is pressed in a spherical segment (classical geometry); the interlayer is pressed into a recess located in the lower steel plate. The six modern antifriction materials considered proved suitable to some extent as contact unit sliding layers for various purposes. Additionally, the influence of the inclination angle of the antifriction layer end face on the structure operation for all sliding layer material variants was analyzed. It has been established that the bearing design with an interlayer in the lower steel plate has a more favorable deformation behavior. Changing of the inclination angle of the antifriction layer end face leads to a decrease in the maximum level of contact parameters and deformation characteristics for all the considered structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call