Abstract

Thrips parvispinus is a serious sucking pest on a number of economically important crops in the oriental region. It has gained importance recently for its drastic range extension distribution as an invasive pest. Here, the complete mitochondrial genome (15,067 bp) of Thrips parvispinus was sequenced and characterized. It possesses 37 genes and the putative noncoding region is duplicated. Comparative analyses of nucleotide diversity, skewness, codon usage bias, and selection pressure in mitochondrial protein-coding genes of the available 31 thrips mitogenomes (24 Terebrantia + 7 Tubulifera) were performed. Phylogenetic analysis showed a sister relationship of T. parvispinus to the clade (T. florum + T. hawaiiensis). Phylogenetic analyses formed the monophyly of subfamilies Phlaeothripinae and Idolothripinae within the family Phlaeothripidae (Suborder Tubulifera). Low nucleotide diversity was indicative of reversal of strand asymmetry in the Tubulifera. Neutrality analysis showed that directional mutation plays a major role in shaping codon usage bias in both suborders. Principal component analysis indicated distinct codon usage patterns in each suborder. Our data suggested weaker selection constrains on Terebrantia than in the Tubulifera. More tubuliferan mitogenomes are required to resolve previous classification hypotheses and elucidate genome evolution in these two suborders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call