Abstract

The Local Climate Zone (LCZ) classification system is used in this study to analyze the impacts of urban morphology on a surface urban heat island (SUHI). Our study involved a comparative analysis of SUHI effects in two Japanese cities, Sapporo and Hiroshima, between 2000 to 2022. We used geographical-information-system (GIS) mapping techniques to measure temporal LST changes using Landsat 7 and 8 images during the summer’s hottest month (August) and classified the study area into LCZ classes using The World Urban Database and Access Portal Tools (WUDAPT) method with Google Earth Pro. The urban thermal field variance index (UTFVI) is used to examine each LCZ’s thermal comfort level, and the SUHI heat spots (HS) in each LCZ classes are identified. The research findings indicate that the mean LST in Sapporo only experienced a 0.5 °C increase over the time, while the mean LST increased by 1.8 °C in Hiroshima City between 2000 and 2022. In 2000, open low-rise (LCZ 6) areas in Sapporo were the hottest, but by 2022, heavy industry (LCZ 10) became the hottest. In Hiroshima, compact mid-rise (LCZ 2) areas were the hottest in 2000, but by 2022, heavy-industry areas took the lead. The study found that LCZ 10, LCZ 8, LCZ E, and LCZ 3 areas in both Dfa and Cfa climate classifications had unfavorable UTFVI conditions. This was attributed to factors such as a high concentration of heat-absorbing materials, impervious surfaces, and limited green spaces. The majority of the SUHI HS and areas with the highest surface temperatures were situated near industrial zones and large low-rise urban forms in both cities. The study offers valuable insights into the potential long-term effects of various urban forms on the SUHI phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.