Abstract

Biological sulfate reduction represents an alternative and sustainable option to reduce the high sulfate load, precipitate heavy metals and neutralise the acidity associated with acid rock drainage (ARD). Sulfate-reducing enrichment cultures have been developed on simple and complex electron donors from several environmental samples and used to inoculate three reactor configurations, namely a continuous stirred tank bioreactor, up-flow anaerobic packed bed reactor and a linear flow channel reactor, with varying degrees of biomass retention provided by carbon microfibres and polyurethane foam. These matrices are included to enhance microbial attachment and colonisation, allowing for the decoupling of hydraulic retention time and biomass retention time. The bioreactor systems are operated under increasingly stringent conditions through the reduction in the hydraulic residence time. The biological sulfate reduction performance and the biomass concentration of planktonic, matrix-attached and matrix-associated communities are routinely monitored. This investigation makes use of biomass quantification of the planktonic community and, following detachment, the matrix-associated community to investigate the resultant microbial communities in these reactor systems. Evaluation of these mixed microbial communities, and their link to process performance, provides an opportunity to impact the design and operation of pilot- and industrial-scale bioprocesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call