Abstract

The World Health Organization reports 30 million people worldwide who need prosthetics and orthotics. Reports by the Consejo Nacional para la Igualdad de Discapacidades de Ecuador (CONADIS) also inform that there are 221,913 people with disabilities. This high demand has been difficult to satisfy, mainly due to the high cost of these devices. Local availability is often limited to a short/small set of size and weight configurations, forcing the patient to settle for a non-optimal option. This paper analyses the kinematics of the knee joint, based on both human gait patterns according to standard ISO 14243-1:2009, ASTM F3141:2017, and experimental results computed by our research group, which has been obtained via 3D videogrammetry techniques integrated with two force platforms. The kinematics obtained from OSSUR2000 and Streifeneder 3A20 knee joint mechanisms have been compared. For this study, SolidWorks motion kinematics and motion simulation have been used with 3D scanning technology to obtain the geometry of these mechanisms. Once analyzed and compared, a knee joint mechanism's basic design presents the flexibility to adapt to different configurations as its main feature. Finite element analysis (FEA) is important to determine the safety factor before testing it on patients. The boundary conditions are considered the parameters of the target population. According to each case, the design is considered a more adjusted safety factor and then the manufacturing step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.