Abstract

The kinetics of low-temperature dissolution of oxides Y2O3 and Fe2O3 in an iron matrix during mechanical alloying has been studied using electron microscopy. It has been shown that the dissolution rate upon deformation of primary coarse oxides Fe2O3 in α iron (and, hence, saturation of the α matrix with oxygen) during treatment in a ball mill for up to 10 h is several times higher than the dissolution rate of Y2O3 oxides. The high-temperature (1100°C) annealing of a mechanoalloyed mixture of Fe + 1.5% Y + 1.35% Fe2O3 leads to the precipitation of 60% (of the total number of particles) secondary oxides 2–5 nm in size and only of 5–7% secondary nanooxides in a mechanoalloyed mixture of Fe + 2% Y2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.