Abstract

Recently, the development of multilevel inverters has great progress in many Industrial applications because of its high efficiency and low switching frequency control methods. To improve the fault diagnosis accuracy, A k-Nearest Neighbors (k-NN) algorithm based on the different feature extractions is used. In this paper, the Principle Component Analysis (PCA) and Probabilistic Principle Component Analysis (PPCA) are used for the feature extraction. Firstly, the data from the output voltage signals under different fault conditions of the Cascaded H-Bridge Multilevel Inverter (CHMI) is optimized by using different feature extractions. Then, the k-NN classifier is used to identify the accurate fault location to diagnosis the fault. Finally, the FFT analysis also applied to evaluate the proposed k-NN technique. To validate the proposed technique the experimental setup has built in the laboratory and verify the simulation results. Based on the experimental and simulation results, the proposed k-NN technique has better performance when the PPCA feature extraction is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.