Abstract

In a photoelectric tracking system, a deformable mirror can be used to adjust the transmission path of a light beam to achieve accurate measurement and tracking of the target position. The single-piezoelectric-sheet deformable mirror is a commonly used wavefront correction device with outstanding advantages, such as its simple structure, low cost, and easy preparation. However, it usually has a large cross-linking value and a weak ability to correct higher-order wavefront aberrations. To solve this problem, a novel single-piezoelectric-sheet deformable mirror driving structure is proposed in this paper, in which the coupling between the driving units is weakened by laser cutting the piezoelectric ceramics along the electrode gaps to reduce the cross-linking value of the deformable mirror. In order to verify the effectiveness of this driving structure, this paper takes the 85-unit single-piezoelectric-sheet deformable mirror as an example and simulates the influence function for different cutting depth conditions. The simulation results show that the cross-linking value between neighboring drive units decreases significantly as the piezoelectric-ceramic-laser cutting depth of the drive electrode gap increases. When the piezoelectric ceramic was laser cut to a depth of half of the overall thickness, the cross-linking value decreased by 6.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.