Abstract

The color of a fruit is an important contributor to the perception of its nutritional value. It is widely acknowledged that the color of sweet cherry changes obviously during ripening. Variations in anthocyanins and flavonoids account for the heterogeneous color of sweet cherries. In this study, we showed that anthocyanins but not carotenoids determine the color of sweet cherry fruits. The difference between red-yellow and red sweet cherry may be attributed to seven anthocyanins, including Cyanidin-3-O-arabinoside, Cyanidin-3,5-O-diglucoside, Cyanidin 3-xyloside, Peonidin-3-O-glucoside, Peonidin-3-O-rutinoside, Cyanidin-3-O-galactoside, Cyanidin-3-O-glucoside (Kuromanin), Peonidin-3-O-rutinoside-5-O-glucoside, Pelargonidin-3-O-glucoside and Pelargonidin-3-O-rutinoside. The content of 85 flavonols differed between red and red-yellow sweet cherries. The transcriptional analysis identified 15 key structural genes involved in the flavonoid metabolic pathway and four R2R3-MYB transcription factors. The expression level of Pac4CL, PacPAL, PacCHS1, PacCHS2, PacCHI, PacF3H1, PacF3H2, PacF3′H, PacDFR, PacANS1, PacANS2, PacBZ1 and four R2R3-MYB were positively correlated with anthocyanin content (ps < 0.05). PacFLS1, PacFLS2 and PacFLS3 expression was negatively correlated with anthocyanin content but positively correlated with flavonols content (ps < 0.05). Overall, our findings suggests that the heterogeneous expression of structural genes in the flavonoid metabolic pathway accounts for the variation in levels of final metabolites, leading to differences between red ‘Red-Light’ and red-yellow ‘Bright Pearl’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call