Abstract

BackgroundKlebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342.ResultsWe have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains.ConclusionsOur results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains.

Highlights

  • Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections

  • Our results indicate that the plasticity occurring at many hierarchical levels may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens

  • The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains

Read more

Summary

Introduction

Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. Klebsiella pneumoniae is a non-motile, rod-shaped, Gram-negative bacterium belonging to the Enterobacteriaceae family. It occupies diverse ecological niches ranging from soil to water, but from an anthropocentric perspective it represents one of the most important human pathogens [1,2]. K. pneumoniae are commonly reported as etiologic agents of either communityacquired urinary tract infections or bacterial pneumonia It can cause any type of infection in hospital settings, including outbreaks in newborns and adults under intensive care, which is likely associated to its ability to spread rapidly in the hospital environment [1]. From the comparative genomic analyses between strains 342 and MGH 78578, Fouts et al [4] identified variations in the distribution of genes related to surface attachment, regulation and signaling, secretion and transport, all of which may have important implications concerning their preferred lifestyle and host ranges (endophytic plant associations for 342 and human pathogen for MGH 78578)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call