Abstract

Abstract This paper aims to investigate the cutting behavior of optical glassy polymers in order to identify the shape defects induced by the micro-machining processes. Polycarbonate (PC), Allyl Diglycol Carbonate (CR39), and polythiourethane (MR7) polymers are considered in this study to perform micro-machining experiments using the orthogonal cutting configuration. The comparative analysis is carried out by conducting the cutting experiments on hybrid samples that are composed of two types of polymers (MR7-PC, CR39-PC, and MR7-CR39) and then comparing the topographic state of the machined hybrid surfaces. Results show that PC is by far the polymer that generates the most shape defects because of its high rate of spring-back. This finding has been validated by nanoindentation experiments that reveal the highest mechanical reaction of PC at the time of nanoindentation unloading. This study demonstrates also that the measured thrust forces could be an indicator for predicting the spring-back defects induced by micro-machining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.