Abstract

BackgroundGrowing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs). These compounds not only are bactericidal by themselves but also enhance the activity of antibiotics. Studies focused on the systematic characterization of APs are hampered by the lack of standard guidelines for testing these compounds. We investigated whether the information provided by methods commonly used for the biological characterization of APs is comparable, as it is often assumed. For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides (n = 57; 9–13 amino acid residues in length) analogous to the lipopolysaccharide-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis.ResultsWhile the minimum inhibitory concentration determined by an automated turbidimetry-based system (Bioscreen) or by conventional broth microdilution methods did not differ significantly, bactericidal activity measured under static conditions in a low-ionic strength solvent resulted in a vast overestimation of antimicrobial activity. Under these conditions the degree of antagonism between the peptides and the divalent cations differed greatly depending on the bacterial strain tested. In contrast, the bioactivity of peptides was not affected by the type of plasticware (polypropylene vs. polystyrene). Susceptibility testing of APs using cation adjusted Mueller-Hinton was the most stringent screening method, although it may overlook potentially interesting peptides. Permeability assays based on sensitization to hydrophobic antibiotics provided overall information analogous – though not quantitatively comparable- to that of tests based on the uptake of hydrophobic fluorescent probes.ConclusionWe demonstrate that subtle changes in methods for testing cationic peptides bring about marked differences in activity. Our results show that careful selection of the test strains for susceptibility testing and for screenings of antibiotic-sensitizing activity is of critical importance. A number of peptides proved to have potent permeability-increasing activity at subinhibitory concentrations and efficiently sensitized Pseudomonas aeruginosa both to hydrophilic and hydrophobic antibiotics.

Highlights

  • Growing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs)

  • We demonstrated that information provided by methods commonly used for the biological characterization of APs differ significantly depending upon changes in the test medium, growth conditions and bacterial species selected for the analysis

  • Others study the interaction between APs and their cell targets in buffers of varied ionic strength [12,13,14,15] or measure the minimum inhibitory concentrations (MICs) in culture media with non-standardized divalent cation content [16,17]

Read more

Summary

Introduction

Growing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs). We investigated whether the information provided by methods commonly used for the biological characterization of APs is comparable, as it is often assumed For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides (n = 57; 9–13 amino acid residues in length) analogous to the lipopolysaccharide-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis. Monly used for the biological characterization of APs is comparable, as it is often assumed For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides analogous to the LPS-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis. Our model organism was Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen resistant to many antibiotics

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call