Abstract
Abstract A study on computer aided diagnosis of posterior cruciate ligaments is presented in this paper. The diagnosis relies on T1-weighted magnetic resonance imaging. During the image analysis stage, the ligament region is automatically detected, localized, and extracted using fuzzy segmentation methods. Eight geometric features are defined for the ligament object. With a clinical reference database containing 107 cases of both healthy and pathological cases, a Fisher linear discriminant is used to select 4 most distinctive features. At the classification stage we employ five different soft computing classifiers to evaluate the feature vector suitability for the computerized ligament diagnosis. Among the classifiers we introduce and specify the particle swarm optimization based Sugeno-type fuzzy inference system and compare its performance to other established classification systems. The classification accuracy metrics: sensitivity, specificity, and Dice index all exceed 90% for each classifier under consideration, indicating high level of the proposed feature vector relevance in the computer aided ligaments diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Polish Academy of Sciences Technical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.